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I Particle production in CGC

I Single inclusive distributions.

I Two particle and three particle correlation

I n-particle correlation

I Multiplicity distribution, origin of NBD

I Phenomenology, probability distribution in p+p and A+A

I Numerical simulations and NBD parameters

I Summary
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Some features of multiplicity distribution
Probability distribution of multiplicity P(n) contains the
information of correlated n-particle production.

One can define a generating function

F (z) ≡
∞∑

n=0

znPn

The fundamental properties of Pn are reflected in the factorial
moments and cumulants. The qth factorial moment

fq = 〈n(n − 1) · · · (n − q + 1)〉 =
dqF (z)

dzq

∣∣∣∣
z=1

The qth factorial cumulant

mq =
dq lnF (z)

dzq

∣∣∣∣
z=1

= fq ± lower cumulants
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Some features of multiplicity distribution

I Color Glass Condensate → ab into framework to study
correlated multi-particle production.

I We need to study the relation between higher and lower
cumulants.

〈
dN

dy1 d2p⊥1 . . . dyq d
2p⊥q

〉
⇐⇒

〈
dN

dy1 d2p⊥1

〉
. . .

〈
dN

dyq d2p⊥q

〉

〈n2〉 = 〈n〉2 + 〈n〉 → Poisson

〈n2〉 = 2〈n〉2 + 〈n〉 → Geometric
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Gluons saturation Gribov, Levin & Ryskin 1983

At High energies gluon density inside hadrons/nuclei saturate by
two competing process:
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QCD evolution equations 
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x1 � x0

x2 � x1

xn � xn�1

BFKL (x→0)
longitudinal momentum 

ordering

• Probability of emitting  n gluons 
  enhanced by large logarithms:

�r� � 1/kt � const

�t � (2xP/k2
�) �⇥ 0

“in a BFKL ladder newly emitted 
gluons are shorter lived and of 

similar size as the previous ones”
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QCD evolution equations 

• At very small-x NON-LINEAR, gluon recombination terms become equally important
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Q

• Saturation scale: Transverse momentum scale that determines the onset of non-linear 
  corrections in QCD evolution equations

“BK-JIMWLK eqns”

• Both DGLAP and BFKL are LINEAR evolution equations
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Figure 2
(a) The x evolution of the gluon, sea quark, and valence quark distributions for Q2 = 10 GeV2, measured at HERA (3). (b) The phase
diagram for quantum chromodynamics (QCD) evolution. Each colored dot represents a parton with transverse area δS⊥ ∼ 1/Q2 and
longitudinal momentum k+ = x P+. Abbreviations: BFKL, Balitsky-Fadin-Kuraev-Lipatov; DGLAP, Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi.

IMF of the parton model, xG(x, Q2) is the number of gluons with a transverse area δS⊥ ≥ 1/Q2 and
a fraction k+/P+ ∼ x of the proton longitudinal momentum.2 In the Regge-Gribov limit, the rapid
rise of the gluon distribution at small x is given by the BFKL (Balitsky-Fadin-Kuraev-Lipatov)
equation (5), which we discuss below.

The stability of the theory formulated in the IMF requires that gluons have a maximal occu-
pation number of order 1/αs. This bound is saturated for gluon modes with transverse momenta
k⊥ ≤ Qs , where Qs(x) is a semihard scale (i.e., the saturation scale) that increases as x decreases.
In this novel saturation regime of QCD (Figure 2b) (6), the proton becomes a dense many-body
system of gluons. In addition to the strong-x dependence, the saturation scale Qs has an A depen-
dence because of the Lorentz contraction of the nuclear parton density in the probe rest frame.
The dynamics of gluons in the saturation regime is nonperturbative, as is typical of strongly cor-
related systems. However, in a fundamental departure from RFT, this dynamics can be computed
by use of weak coupling methods as a consequence of the large saturation scale that is dynamically
generated by gluon interactions. Thus, instead of the hard-plus-soft paradigm of the Bjorken limit,
one has a powerful new paradigm in the Regge-Gribov limit to compute the bulk of previously
considered intractable scattering dynamics in hadrons and nuclei.

The color glass condensate (CGC) is the description of the properties of saturated gluons in
the IMF in the Regge-Gribov limit. The effective degrees of freedom in this framework are color
sources ρ at large x and gauge fields Aµ at small x. At high energies, because of time dilation,
the former are frozen configurations on the natural timescales of the strong interactions and are
distributed randomly from event to event. The latter are dynamical fields coupled to the static

2The light-cone coordinates are defined as k± = (k0 ± k3)/
√

2.

466 Gelis et al.
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∂φ(x , k⊥)

∂ log(x0/x)
≈ K ⊗ φ(x , k⊥)− φ(x , k⊥)2 BK/JIMWLK equation

Non-linear equation gives rise a scale, Q2
s (x)→ saturation scale.

High energy Nuclei/hadrons → large parton density → classical approx.
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Color Glass Condensate: MV model
I Color: QCD (gluons carry color charge)
I Glass: Stochastic interactions, dynamics on very long time

scales (time dilation).
I Condensate: Fields with large occupation # ∼ 1/αS with

mom. peaked at kT ≈ QS

TPSC%seminar,%IIT%Roorkee%%29/11/12% 36%
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figure : Albacete QM12

Unknown color charge distribution (weight functional):

W [ρ] = exp

[
− ρ2(x⊥)

2µ2(x⊥)

]
, g2µ(x⊥) ∼ QS(x , x⊥)

McLerran , Venugopalan 1994 (hep-ph/9309289)
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Color Glass Condensate: MV model

I Solve classical Yang-Mills equations

[Dµ,F
µν ] = Jν

for color current due to colliding sources (ρ1 and ρ2)

Jνa = gδν+δ(x−)ρ1,a(x⊥) + gδν−δ(x+)ρ2,a(x⊥)

I Extract the gauge field after collision for given color charge
configuration.

I Analytical calculation possible for lowest order of sources.

I Final observables O(ρ1, ρ2) should be averaged over color
charge configuration

〈O〉 =

∫
[ dρ1][dρ2]Wy [ρ1]Wy [ρ2]O(ρ1, ρ2).
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Color correlation in particle production
Averaging 〈O〉 ⇒ connection between sources ⇒ color correlation.
In the MV model

W [ρ] ≡ exp

(
−
∫

d2x⊥
ρa(x⊥)ρa(x⊥)

2µ2
A

)

ρa → random sources distributed from local Gaussian.
fields A(x⊥) ∼ −ρ(x⊥)/∇2

⊥ =⇒ A(k⊥) ∼ −ρ(k⊥)/k⊥
2

Yang-Mills introduces non-local correlation over length scale 1/Qs

→ Glasma flux tube picture.

Correlated production → Gaussian correlations in momentum space,

〈
ρ̃∗

a
(k⊥)ρ̃b(k′⊥)

〉
= (2π)2µ2

A
δabδ(k⊥ − k′⊥)

Further discussion → MV model and LO particle production.
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Single inclusive distribution

The one gluon production amplitude for fixed color charges ρ1, ρ2

M∼ ρ1(k⊥)

k⊥
2

ρ2(p⊥ − k⊥)

(p⊥ − k⊥)2
Lγ(p, k⊥) ,

Lγ(p, k⊥)→ Lipatov vertex.

pp
=

k

p−k

inclusive gluon distribution
〈

dN
dypd2p⊥

〉
∼
〈
|M|2

〉
∼ 〈ρ∗1ρ1ρ

∗
2ρ2〉

→ contracted by Gaussian correlator.

p

〈
dN

dypd2p⊥

〉
=

S⊥
8π4

(g2µ
A
)4

g2

Nc(N2
c − 1)

p4
⊥

ln

(
p⊥
Qs

)
, p⊥ � Qs

IR divergence (∼
∫
k⊥
d2k⊥/k⊥

4) → regulated over 1/Qs .

S⊥ → transverse overlap area of collision.
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Two particle correlation
Dumitru, Gelis, McLerran, Venugopalan 0804.3858

The dominant contribution comes from disconnected diagrams
connected by color averaging.

p

q

The two gluon production amplitude for fixed color charges ρ1, ρ2

M∼ ρ1(k1⊥)

k2
1⊥

ρ1(k2⊥)

k2
2⊥

ρ2(p⊥ − k1⊥)

(p⊥ − k1⊥)2

ρ2(q⊥ − k2⊥)

(q⊥ − k2⊥)2
Lµ(p, k1⊥)Lν(q, k2⊥) ,

〈
|M|2

〉
→ 〈ρ∗1ρ∗1ρ1ρ1ρ

∗
2ρ
∗
2ρ2ρ2〉 ⇒ 9 possible ways to contract.

〈
|M|2

〉
→ 8 connected & 1 disconnected diagram
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Two particle correlation
Dumitru, Gelis, McLerran, Venugopalan 0804.3858

Correlated and non-correlated contribution

C2(p,q) ≡
〈

dN2

dypd2p⊥dyqd
2q⊥

〉
−
〈

dN

dypd2p⊥

〉〈
dN

dyqd2q⊥

〉
,

↓ ↓
connected disconnected
diagrams diagrams

p

q

p

q

8 topologies 1 topology
It can be shown

C2(p,q) =
κ2

S⊥Q2
s

〈
dN

dypd2p⊥

〉〈
dN

dyqd2q⊥

〉
,

κ2 → non-perturbative constant.
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Three particle correlation
pp

=

k

p−k

The different terms of C3(p,q, l)

〈
dN3

dypd2p⊥dyqd2q⊥dyld
2 l⊥

〉 〈
dN2

dypd2p⊥dyqd2q⊥

〉〈
dN

dyld
2 l⊥

〉 〈
dN

dypd2p⊥

〉〈
dN

dyqd2q⊥

〉〈
dN

dypd2 l⊥

〉
↓ ↓ ↓

l q p p q l l q p p q l l q p p q l

Dusling, Fernandez-Fraile, Venugopalan 0902.4435

A total 255 topologies → 16 contribute to the correlation term.
For QS � p⊥, q⊥, l⊥

C3(p,q, l) =
κ3

S2
⊥Q

4
S

〈
dN

dypd2p⊥

〉〈
dN

dyqd2q⊥

〉〈
dN

dyld2l⊥

〉
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n-particle correlation: factorial moments

LO Two-particle and three-particle correlation results indicates
〈
n2
〉
−〈n〉2 ∝ 〈n〉2

〈
n3
〉
−3 〈n〉2 〈n〉+ 2 〈n〉3 ∝ 〈n〉3

and in Glasma 〈n〉 ∼ 1/g2 ∼ 1/αs

The qth factorial moment

fq = 〈n(n − 1) · · · (n − q + 1)〉 =
dqF (z)

dzq

∣∣∣∣
z=1

fq = 〈nq〉+ lower order terms

fq = O
(

1

α2q
s

)
+ lower order in

(
1

αs

)

The LO contribution O
(

1
αq
s

)
=⇒ fq ≈ 〈nq〉

factorial moments in LO → from connected diagrams.
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factorial cumulants

mq =
dq lnF (z)

dzq

∣∣∣∣
z=1

m2 = 〈n(n − 1)〉 − 〈n〉2

m3 = 〈n(n − 1)(n − 2)〉 − 3
〈
n2
〉
〈n〉+ 2 〈n〉3

=⇒ mq = fq ± lower cumulants

In the Glasma for LO in αs (≡ O(1/αq
s ))

mq = 〈nq〉 − disconnected diagrams

Two-particle and three particle correlation results show

mq=2,3 = 〈nq〉 − disconnected diagrams = 〈n〉q
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multi-particle production topologies
Gelis, Lappi, McLerran 0905.3234

〈nq〉 → q ladders to be contracted.

p
1

p
2

... pq pq ... p
2

p
1

define

I Step 1: Connect 2q building blocks

p
1

... pq pq 
... p

1 p p = p

I Step 2: combine loose ends to form connected loops

p
1

p
2

p
3

p
4

→ 2q(q − 1)! topologies
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〈
dN

dy1 d2p⊥1 . . . dyq d
2p⊥q

〉

conn.

=

(q − 1)!
(Nc

2 − 1)κQs
2S⊥

2π

〈
dN

dy1 d2p⊥1

〉
. . .
〈

dN
dyq d2p⊥q

〉

(
(Nc

2 − 1)κQs
2S⊥/(2π)

)q

⇒ mq = (q − 1)! k

(
n̄

k

)q

with

k = κ
(Nc

2 − 1)Qs
2S⊥

2π
This form of mq defines the Negative Binomial distribution

P
NB

n =
Γ(k + n)

Γ(k)Γ(n + 1)

n̄nkk

(n̄ + k)n+k

With the generating function

Fk,n̄(z) ≡
∞∑

n=0

zn Pn =⇒ mq ≡
dq

dzq
lnFk,n̄(z)

∣∣∣∣
z=1

= (q − 1)! k

(
n̄

k

)q
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Negative Binomial distributions

NBD comes naturally due to
I Gaussian combinatorics of classical sources

I Correlated production over length scale O(1/Qs)

pA 

pB 

b 

1/Q2
s↖

The parameter of NBD (n̄ , k )

k = κ
(Nc

2 − 1)Qs
2S⊥

2π

κ→ includes the details of IR diverges regulated at the scale Qs .
Qs

2S⊥ → no. of flux tubes (size 1/Q2
s ) in the transverse area S⊥.

(N2
c − 1) no. of gluon colors emitted from each flux tube.

For k = 1 , NBD → Bose-Einstein (BE) distribution.

Single color gluon emitted from single flux tube → BE distribution.

Many sources of color → entropy maximization.
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Modelling multiplicity distribution in p+p collisions
Using IP-Sat model + k⊥−factorization approach.

I n̄(b)→ k⊥-factorization

I k(b) ∝ Q2
s S⊥(b)→ IP-Sat parametrization of Qs

I κ (non-perturbative constant) → unknown.

I convolution of multiple NBDs with probability distributions of
impact parameter dP/d2b⊥ → k⊥-factorization.
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Modelling multiplicity distribution in p+p collisions

P(n) =

∫
d2b⊥

dPinel.

d2b⊥
PNBD
n (n̄(b⊥), k(b⊥))

→ good agreement over wide range of energy.

n
0 10 20 30 40 50 60
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(n
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Entries  0Entries  0

|<0.5η|  1)×CMS 7 TeV (
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 0.01)×ALICE 0.9 TeV (

 0.01)×UA5 0.9 TeV (

 0.001)×UA5 0.2 TeV (

IPSat

The non-perturbative constant κ extracted from fits ∼ 1/6

Tribedy, Venugopalan 1011.1895 , 1112.2445
see also Dumitru et al, arXiv:1111.3031
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E-by-E 2+1D CYM simulation : IP-Glasma

IP-Glasma (Impact parameter dependent Glasma) model:
Even-by-event solves

[Dµ,F
µν ] = Jν

In the presence of color current

JνA,B ≈ δ(x∓)ρ(x⊥)δµ±

Nuclear color charge distribution
W [ρ]→ from IP-Sat model

Nucleons sampled from Woods-Saxon
distribution.

Color charge density for one A+A collision

Two point correlator for one A+A collision

Schenke, Tribedy, Venugopalan PRL 108(2012)
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Glasma : CYM evolution after collision
The field after collision at τ = 0 has simple relation

Ai = Ai
(A) + Ai

(B) , A
η =

ig

2

[
Ai

(A),A
i
(B)

]

The fields are evolved at τ > 0 according to [Dµ,F
µν ] = 0

D F  = J
A

 

D F  = J
B
 

D F  = 0

Multiplicity calculation done at τ ∼ 1/Qs

Schenke, Tribedy, Venugopalan PRC 86(2012)
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Multiplicity and Energy density fluctuation for A+A
collisions Schenke, Tribedy, Venugopalan PRC 86(2012)

IP-Glasma naturally produces negative-binomial multiplicity distribution.
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I NBD multiplicity distribution obtained for a given configuration of
color charge distribution inside colliding nucleus.

I Color charge distribution changes with fluctuating nucleon positions
and impact parameter.

I Min-bias distribution → convolution of many NBDs.

22 / 24



NBD parameters from IP-Glasma

Schenke, Tribedy, Venugopalan PRC 86(2012)

Parameters of NBD in A+A → consistent with perturbative
approach.
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At large Q2
s S⊥ the result approaches to Glasma flux tube model for

n-gluon correlations.
Glasma flux tube picture → non-perturbatively consistent.
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Summary

I Glasma flux tube picture describes microscopic origin of NBD.

I Saturation model based calculation gives good description of
experimental multiplicity distribution in p+p collisions.

I Event-by-event solutions of CYM naturally produces NBD.

I Distribution of transverse energy also follows NBD.

I IP-Glasma model validates the perturbative picture at large
gluon densities.
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